PASSO A PASSO PARA DIMENSIONAMENTO DE MÓDULOS POR STRING

O cálculo de dimensionamento deve ser realizado de acordo com a temperatura mínima registrada no local de instalação, pois há variação na tensão do módulo de acordo com a temperatura de trabalho dele. Quanto menor a temperatura, maior o Voc e quanto maior a temperatura, menor o Voc. Neste caso, usaremos a mínima de 0ºC.

1. MÓDULOS

Para este exemplo, usaremos como base o módulo solar BYD 535W. Consultar no datasheet do módulo utilizado a Tensão de Circuito Aberto (Voc) à temperatura de 25°C: Neste caso, o Voc é 49,42 V.

DADOS GERAIS		
Modelo	535 MLK-36	
Marca	BYD	
Máxima Potência (Pmax)	535 Wp	
Tensão de circuito aberto (Voc)	49,42 V	
Corrente de curto circuito (Isc)	13,49 A	
Tensão em máxima potência (Vmpp)	41,83 V	
Corrente em máxima potência (Impp)	12,79 A	
Eficiência do módulo	20,90%	
Garantia de construção	12 anos	
Garantia de eficiência linear	25 anos	

2. INVERSOR

Para este exemplo usaremos o inversor BYD-K-1P9K-2M. Consultar no datasheet do inversor a Tensão Máxima de Entrada: para este inversor é 600V.

DADOS GERAIS			
Modelo	BYD-K-1P8K-2M	BYD-K-1P9K-2M	
Marca	BYE	BYD	
Alimentação	ON-Grid/Pain	ON-Grid/Painéis solares	
Plataforma de monitoramento	WiseSol	WiseSolarPlus	
DADOS	DE ENTRADA CC		
Máxima potência de entrada (kW)	12	13.5	
Máxima tensão de entrada (V)	600	600	
Tensão de início (V)	60	60	
Alcance de tensão por MPPT (V)	80-5	80-550	
Corrente máxima de entrada por MPPT (A)	15	15	
Corrente máxima por entrada (A)	15	15	
Máxima corrente de curto circuito (A) por MPPT	19	19	
MPPTs	2	2	
Entradas por MPPT	1	1	
Total entradas	2	2	

3. EXEMPLO (Temp. Mínima 0°C)

Verificar o coeficiente de temperatura de Voc (variação de acordo com temperatura local)

CARACTERÍSTICAS DE TEMPERATURA		
Temperatura nominal de operação das células (Noct)	45°C ± 2°C	
Coeficiente de temperatura da potência máxima	-0,328%/9C	
Coeficiente de temperatura de tensão de cicuito aberto	-0,254%/ºC	
Coeficiente de temperatura de corrente de curto circuito	0.041%/°C	

Isso significa que a tensão Voc varia 0,254% / °C para cima ou para baixo de acordo com a temperatura.

Sendo assim, numa cidade com temperatura mínima de 0°C, temos que:

$$25^{\circ} \text{ C} - 0^{\circ} \text{ C} = 25^{\circ} \text{ C}$$
 de diferença

Logo, o percentual de variação de tensão será de:

$$25 \times 0.254 = 6.35\%$$

Dessa forma, a Tensão de Circuito Aberto (Voc) de cada modulo a 0°C será de:

$$49,42 \text{ V} + 6.35\% = 52,55 \text{ Volts}$$

Portanto, para calcularmos o número máximo de módulos por *string* devemos considerar o Voc na temperatura mínima local:

Tensão Máxima de Entrada do inversor / Voc = número máximo de módulos por string

$$600v / 52,55v = 11,41 \text{ módulos}$$

O resultado sempre deve ser arredondado para baixo, sendo assim, seriam usados no máximo **11 módulos BYD 535W por string**.

No caso do inversor BYD 9K, que conta com **duas entradas**, o máximo de módulos do equipamento vai ser **2** * **11 = 22 módulos de 535 Wp**, totalizando 11,77 kWp de potência.

<u>OBS 1:</u> AS STRINGS DE UM MESMO MPPT DEVEM TER A MESMA QUANTIDADE DE MÓDULOS.

<u>OBS 2:</u> O EXCESSO DE MÓDULOS PODE GERAR SOBRETENSÃO E DANIFICAR O INVERSOR. NESTE CASO A GARANTIA DO FABRICANTE NÃO COBRE DANOS CAUSADOS POR SOBRETENSÃO.

<u>OBS 3:</u> TAMBÉM DEVE SER RESPEITADO O LIMITE MÁXIMO DE POTÊNCIA DO INVERSOR. NESTE CASO 13500W. OU 13.5KW.

